Legal Description: T100N-R49W-Sec.33, 34
Location from nearest town: 3 miles east of Harrisburg, SD

Surface Area: 105 acres
Meandered (Y/N): No
OHWM elevation: NA
Outlet elevation: NA
Max. depth at outlet elevation: 26 feet
Observed water level: Full
Contour map available (Y/N): Yes

Watershed area: 24,564 acres
Shoreline length: 4.3 miles
Date set: NA
Mean depth at outlet elevation: 9 feet
Lake volume: 930 acre feet
Date mapped: 1997

DENR beneficial use classifications: (4) warmwater permanent fish propagation, (7) immersion recreation, (8) limited-contact recreation and (9) fish and wildlife propagation and stock watering
Introduction

General

Lake Alvin is an artificial impoundment formed by the construction of a dam across the lower end of Nine Mile Creek. It was named for Alvin Dempewolf, the only World War 1 soldier from Harrisburg who died overseas. The construction of the dam was completed in August 1954 and the lake completely filled in 1957. The concrete spillway for the dam was replaced in 1994.

Ownership of Lake and Adjacent Lakeshore Properties

Most of the land inundated by and surrounding Lake Alvin is owned and managed by the South Dakota Department of Game, Fish and Parks (GFP). The Parks Division of GFP manages a State Recreation Area surrounding the southeast, east, and northeast corners of the lake as well as a Lake Access Area on the northwest corner of the lake.

Fishing Access

The Lake Alvin Recreation Area on the northeast side of the lake has a single lane boat ramp, boat dock, concrete vault toilet, and parking lot as well as several areas accessible to shore fishing (Figure 1). On the southeast corner of the dam there is a handicapped accessible fishing dock and several additional shore fishing areas. The Southwest Access Area has a public toilet and a narrow boat ramp with a dock suitable for small boats. There is plenty of shoreline to fish but the lake is shallow in this area. The entire lake has been designated as a no-wake zone to protect the shoreline from erosion. At no time can boats exceed 5 mph or produce a visible wake.

Water Quality and Aquatic Vegetation

Water clarity varies considerably from year to year depending on the amount of runoff the lake receives from the watershed (Table 1). The abundance of submerged aquatic vegetation is directly related to water clarity.

Continuous temperature/dissolved oxygen loggers were deployed on June 2nd at depths of 0.5, 1.5, 2.5 and 3.5 meters above the lake bottom (6.5 m or 21.3 ft deep) at the lower end of the reservoir. At the time of deployment, the lake was already stratified with little to no dissolved oxygen at depths greater than 4 m (15.7 ft). The lake remained stratified until the second week of August when cool air temperatures caused temporary destratification. The water column quickly re-stratified and deep waters again became hypoxic. Permanent destratification occurred in mid-September.
Table 1. Water temperature, Secchi depth and observations/comments on water quality and aquatic vegetation in Lake Alvin, Lincoln County, 2006-2015.

<table>
<thead>
<tr>
<th>Year</th>
<th>Water Temp °C (°F)</th>
<th>Secchi Depth cm (in)</th>
<th>Observations/Comments (algae, aquatic vegetation, water quality, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>24 (75)</td>
<td>63 (25)</td>
<td>Some sago pondweed and cattails</td>
</tr>
<tr>
<td>2014</td>
<td>26 (79)</td>
<td>52 (20)</td>
<td>Some sago pondweed and cattails</td>
</tr>
<tr>
<td>2013</td>
<td>27 (81)</td>
<td>97 (38)</td>
<td>Some sago pondweed, cattails</td>
</tr>
<tr>
<td>2012</td>
<td>26 (78)</td>
<td>61 (24)</td>
<td>Small beds of sago pondweed, floating-leaf pondweed</td>
</tr>
<tr>
<td>2011</td>
<td>21 (69)</td>
<td>41 (15)</td>
<td>Sago pondweed, cattails, floating-leaf pondweed</td>
</tr>
<tr>
<td>2010</td>
<td>24 (75)</td>
<td>41 (16)</td>
<td>--</td>
</tr>
<tr>
<td>2009</td>
<td>28 (82)</td>
<td>244 (96)</td>
<td>Scattered beds of sago pondweed and cattails</td>
</tr>
<tr>
<td>2008</td>
<td>24 (75)</td>
<td>100 (39)</td>
<td>Small beds of sago pondweed, floating-leaf pondweed</td>
</tr>
<tr>
<td>2007</td>
<td>26 (79)</td>
<td>325 (128)</td>
<td>Sago pondweed, floating-leaf pondweed, cattails</td>
</tr>
<tr>
<td>2006</td>
<td>-- (--)</td>
<td>162 (64)</td>
<td>Sago pondweed, floating-leaf pondweed, cattails</td>
</tr>
</tbody>
</table>

Fish Community

Lake Alvin contains a very diverse fish community for a relatively small impoundment (Table 2). Many species, like largemouth bass, bluegill and crappie are normally found in small impoundments while river species, like freshwater drum, river carpsucker, gizzard shad and bigmouth buffalo likely entered from the Big Sioux River during extreme flood events.

Table 2. Fish species commonly found in Lake Alvin, Lincoln County.

<table>
<thead>
<tr>
<th>Game Species</th>
<th>Other Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largemouth Bass</td>
<td>Common Carp</td>
</tr>
<tr>
<td>Black Crappie</td>
<td>Freshwater Drum</td>
</tr>
<tr>
<td>Walleye</td>
<td>River Carpsucker</td>
</tr>
<tr>
<td>Bluegill</td>
<td>White Sucker</td>
</tr>
<tr>
<td>Channel Catfish</td>
<td>Bighmouth Buffalo</td>
</tr>
<tr>
<td>White Crappie</td>
<td>Golden Shiner</td>
</tr>
<tr>
<td>Black Bullhead</td>
<td>Gizzard Shad</td>
</tr>
<tr>
<td>Yellow Bullhead</td>
<td></td>
</tr>
<tr>
<td>Orange-spotted Sunfish</td>
<td></td>
</tr>
<tr>
<td>Green Sunfish</td>
<td></td>
</tr>
<tr>
<td>Northern Pike</td>
<td></td>
</tr>
<tr>
<td>Yellow Perch</td>
<td></td>
</tr>
</tbody>
</table>
Fish Management

Abundant non-game species compete with game fish for forage and reduce fishing opportunity. In addition, poor water quality and the resulting lack of abundant aquatic vegetation also limit the fishery. Fish kills have also become more common in recent years (Table 3). Stockings of overwintered juvenile largemouth bass and walleye have been attempted to increase fishing opportunity (Table 4). A pre-spawn, adult gizzard shad stocking was made in 2015 to provide abundant young-of-the-year shad as a source of food for largemouth bass and crappie.

Table 3. Fish kill history for Lake Alvin, Lincoln County.

<table>
<thead>
<tr>
<th>Year</th>
<th>Severity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Light</td>
<td>Minor summer kills of bluegill and crappie</td>
</tr>
<tr>
<td>2004</td>
<td>Moderate</td>
<td>Summer kill of crappie and carp on 6/22/04</td>
</tr>
<tr>
<td>2003</td>
<td>Light</td>
<td>9/2/03 – bay W of fishing pier – 90 BLG, 7 LMB, 40 WHS</td>
</tr>
<tr>
<td>2001</td>
<td>Light</td>
<td>September fish kill, possible fall turnover</td>
</tr>
</tbody>
</table>

Table 4. Stocking history for Lake Alvin, Lincoln County, 2006-2015.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
<th>Species</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>50</td>
<td>Gizzard Shad</td>
<td>Adult</td>
</tr>
<tr>
<td></td>
<td>7,560</td>
<td>Walleye</td>
<td>Fingerling</td>
</tr>
<tr>
<td>2014</td>
<td>90,000</td>
<td>Walleye</td>
<td>Fry</td>
</tr>
<tr>
<td>2013</td>
<td>1,056</td>
<td>Largemouth Bass</td>
<td>Large Fingerling</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>Walleye</td>
<td>Adult</td>
</tr>
<tr>
<td>2012</td>
<td>259</td>
<td>Largemouth Bass</td>
<td>Adult</td>
</tr>
<tr>
<td>2011</td>
<td>2,240</td>
<td>Largemouth Bass</td>
<td>Large Fingerling</td>
</tr>
<tr>
<td>2010</td>
<td>1,585</td>
<td>Largemouth Bass</td>
<td>Juvenile</td>
</tr>
<tr>
<td>2008</td>
<td>684,610</td>
<td>Fathead Minnow</td>
<td>Adult</td>
</tr>
<tr>
<td>2007</td>
<td>430</td>
<td>Walleye</td>
<td>Adult</td>
</tr>
</tbody>
</table>

Methods

Lake Alvin was sampled on June 22-24, 2015 with three overnight gill-net sets and 10 overnight trap-net sets. The gill nets are 45.7 m long x 1.8 m deep (150 ft long x 6 ft deep) with one 7.6 m (25 ft) panel each of 13, 19, 25, 32, 38 and 51-mm-bar-mesh (⅛, ¼, ⅓, 1¼, ⅓, and 2 in) monofilament netting. The trap nets are constructed with 19-mm-bar-mesh (¾ in) netting, 0.9 m high x 1.5 m wide (3 ft high x 5 ft wide) frames and 18.3 m (60 ft) long leads.
Results and Discussion

Net Catch Results

Black bullheads comprised about 84% of the gill net sample and 54% of the trap net sample (Tables 5, 7). All bullheads sampled in gill nets were longer than stock length (15 cm, 6 in) while most in the trap nets were stock-quality length (15-23 cm, 6-9 in, Table 5). Channel catfish were the only game species sampled in significant abundance. Bigmouth buffalo, freshwater drum, gizzard shad and river carpsucker likely entered the lake from the Big Sioux River during major flood events in 2009, 2011 and 2014 (Table 8).

Table 5. Total catch from three overnight gill nets set in Lake Alvin, Lincoln County, June 22-24, 2015.

<table>
<thead>
<tr>
<th>Species</th>
<th>#</th>
<th>%</th>
<th>CPUE</th>
<th>80% C.I.</th>
<th>Mean CPUE*</th>
<th>PSD</th>
<th>RSD-P</th>
<th>Mean Wr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Bullhead</td>
<td>427</td>
<td>84.2</td>
<td>142.3</td>
<td>+26.4</td>
<td>78.8</td>
<td>0</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Channel Catfish</td>
<td>38</td>
<td>7.5</td>
<td>12.7</td>
<td>+3.0</td>
<td>9.0</td>
<td>84</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>Common Carp</td>
<td>19</td>
<td>3.7</td>
<td>6.3</td>
<td>+3.7</td>
<td>4.3</td>
<td>5</td>
<td>5</td>
<td>--</td>
</tr>
<tr>
<td>White Sucker</td>
<td>12</td>
<td>2.4</td>
<td>4.0</td>
<td>+2.2</td>
<td>3.0</td>
<td>100</td>
<td>33</td>
<td>--</td>
</tr>
<tr>
<td>River Carpsucker</td>
<td>4</td>
<td>0.8</td>
<td>1.3</td>
<td>+1.1</td>
<td>1.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Black Crappie</td>
<td>3</td>
<td>0.6</td>
<td>1.0</td>
<td>+0.7</td>
<td>0.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Freshwater Drum</td>
<td>2</td>
<td>0.4</td>
<td>0.7</td>
<td>+0.4</td>
<td>1.4</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Gizzard Shad</td>
<td>1</td>
<td>0.2</td>
<td>0.3</td>
<td>+0.4</td>
<td>0.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Walleye</td>
<td>1</td>
<td>0.2</td>
<td>0.3</td>
<td>+0.4</td>
<td>0.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*10 years (2006-2015)

Table 6. CPUE by length category for selected species sampled with gill nets in Lake Alvin, Lincoln County, June 22-24, 2015.

<table>
<thead>
<tr>
<th>Species</th>
<th>Substock</th>
<th>Stock</th>
<th>S-Q</th>
<th>Q-P</th>
<th>P+</th>
<th>All sizes</th>
<th>80% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Bullhead</td>
<td>--</td>
<td>142.3</td>
<td>142.3</td>
<td>--</td>
<td>--</td>
<td>142.3</td>
<td>+26.4</td>
</tr>
<tr>
<td>Channel Catfish</td>
<td>--</td>
<td>12.7</td>
<td>2.0</td>
<td>10.7</td>
<td>--</td>
<td>12.7</td>
<td>+3.0</td>
</tr>
<tr>
<td>Common Carp</td>
<td>--</td>
<td>6.3</td>
<td>6.0</td>
<td>--</td>
<td>0.3</td>
<td>6.3</td>
<td>+3.7</td>
</tr>
<tr>
<td>White Sucker</td>
<td>--</td>
<td>4.0</td>
<td>--</td>
<td>2.7</td>
<td>1.3</td>
<td>4.0</td>
<td>+2.2</td>
</tr>
<tr>
<td>River Carpsucker</td>
<td>--</td>
<td>1.3</td>
<td>--</td>
<td>0.3</td>
<td>1.0</td>
<td>1.3</td>
<td>+1.1</td>
</tr>
<tr>
<td>Black Crappie</td>
<td>--</td>
<td>1.0</td>
<td>1.0</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
<td>+0.7</td>
</tr>
<tr>
<td>Freshwater Drum</td>
<td>--</td>
<td>0.7</td>
<td>--</td>
<td>0.3</td>
<td>0.3</td>
<td>0.7</td>
<td>+0.4</td>
</tr>
<tr>
<td>Gizzard Shad</td>
<td>--</td>
<td>0.3</td>
<td>0.3</td>
<td>--</td>
<td>--</td>
<td>0.3</td>
<td>+0.4</td>
</tr>
<tr>
<td>Walleye</td>
<td>--</td>
<td>0.3</td>
<td>--</td>
<td>0.3</td>
<td>--</td>
<td>0.3</td>
<td>+0.4</td>
</tr>
</tbody>
</table>

Length categories can be found in Appendix A.

1 See Appendix A for definitions of CPUE, PSD, RSD, RSD-P and mean Wr.
Table 7. Total catch from ten overnight trap nets set in Lake Alvin, Lincoln County, June 22-24, 2015.

<table>
<thead>
<tr>
<th>Species</th>
<th>#</th>
<th>%</th>
<th>CPUE</th>
<th>80% C.I.</th>
<th>Mean CPUE*</th>
<th>PSD</th>
<th>RSD-P</th>
<th>Mean Wr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Bullhead</td>
<td>1,331</td>
<td>53.6</td>
<td>133.1</td>
<td>+37.6</td>
<td>124.2</td>
<td>2</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Bluegill</td>
<td>605</td>
<td>24.4</td>
<td>60.5</td>
<td>+26.7</td>
<td>33.2</td>
<td>34</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>Black Crappie</td>
<td>409</td>
<td>16.5</td>
<td>40.9</td>
<td>+14.4</td>
<td>41.3</td>
<td>8</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>White Crappie</td>
<td>36</td>
<td>1.4</td>
<td>3.6</td>
<td>+4.3</td>
<td>0.7</td>
<td>56</td>
<td>22</td>
<td>89</td>
</tr>
<tr>
<td>White Sucker</td>
<td>31</td>
<td>1.2</td>
<td>3.1</td>
<td>+1.2</td>
<td>3.9</td>
<td>97</td>
<td>65</td>
<td>--</td>
</tr>
<tr>
<td>Hybrid Sunfish</td>
<td>22</td>
<td>0.9</td>
<td>2.2</td>
<td>+1.2</td>
<td>0.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Green Sunfish</td>
<td>15</td>
<td>0.6</td>
<td>1.5</td>
<td>+1.1</td>
<td>0.3</td>
<td>7</td>
<td>0</td>
<td>101</td>
</tr>
<tr>
<td>O. S. Sunfish</td>
<td>14</td>
<td>0.6</td>
<td>1.4</td>
<td>+0.7</td>
<td>0.6</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Channel Catfish</td>
<td>11</td>
<td>0.4</td>
<td>1.1</td>
<td>+0.6</td>
<td>3.7</td>
<td>20</td>
<td>0</td>
<td>81</td>
</tr>
<tr>
<td>Freshwater Drum</td>
<td>3</td>
<td>0.1</td>
<td>0.3</td>
<td>+0.3</td>
<td>0.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>River Carpsucker</td>
<td>2</td>
<td>0.1</td>
<td>0.2</td>
<td>+0.2</td>
<td>0.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Bigmouth Buffalo</td>
<td>1</td>
<td>0.0</td>
<td>0.1</td>
<td>+0.1</td>
<td>0.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Common Carp</td>
<td>1</td>
<td>0.0</td>
<td>0.1</td>
<td>+0.1</td>
<td>0.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Golden Shiner</td>
<td>1</td>
<td>0.0</td>
<td>0.1</td>
<td>+0.1</td>
<td>0.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Northern Pike</td>
<td>1</td>
<td>0.0</td>
<td>0.1</td>
<td>+0.1</td>
<td>0.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*10 years (2006-2015)

Table 8. CPUE by length category for selected species sampled with trap nets in Lake Alvin, Lincoln County, June 22-24, 2015.

<table>
<thead>
<tr>
<th>Species</th>
<th>Substock</th>
<th>Stock</th>
<th>S-Q</th>
<th>Q-P</th>
<th>P+</th>
<th>All sizes</th>
<th>80% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Bullhead</td>
<td>--</td>
<td>133.1</td>
<td>130.1</td>
<td>3.0</td>
<td>--</td>
<td>133.1</td>
<td>+37.6</td>
</tr>
<tr>
<td>Bluegill</td>
<td>--</td>
<td>60.5</td>
<td>39.9</td>
<td>20.6</td>
<td>--</td>
<td>60.5</td>
<td>+26.7</td>
</tr>
<tr>
<td>Black Crappie</td>
<td>5.0</td>
<td>35.9</td>
<td>32.9</td>
<td>3.0</td>
<td>--</td>
<td>40.9</td>
<td>+14.4</td>
</tr>
<tr>
<td>White Crappie</td>
<td>--</td>
<td>3.6</td>
<td>1.6</td>
<td>1.2</td>
<td>0.8</td>
<td>3.6</td>
<td>+4.3</td>
</tr>
<tr>
<td>White Sucker</td>
<td>--</td>
<td>3.1</td>
<td>0.1</td>
<td>1.0</td>
<td>2.0</td>
<td>3.1</td>
<td>+1.2</td>
</tr>
<tr>
<td>Hybrid Sunfish*</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2.2</td>
<td>+1.2</td>
</tr>
<tr>
<td>Green Sunfish</td>
<td>--</td>
<td>1.5</td>
<td>1.4</td>
<td>0.1</td>
<td>--</td>
<td>1.5</td>
<td>+1.1</td>
</tr>
<tr>
<td>O. S. Sunfish*</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.4</td>
<td>+0.7</td>
</tr>
<tr>
<td>Channel Catfish</td>
<td>0.1</td>
<td>1.0</td>
<td>0.8</td>
<td>0.2</td>
<td>--</td>
<td>1.1</td>
<td>+0.6</td>
</tr>
<tr>
<td>Freshwater Drum</td>
<td>0.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.3</td>
<td>+0.3</td>
</tr>
<tr>
<td>River Carpsucker</td>
<td>--</td>
<td>0.2</td>
<td>--</td>
<td>0.2</td>
<td>--</td>
<td>0.2</td>
<td>+0.2</td>
</tr>
<tr>
<td>Bigmouth Buffalo</td>
<td>--</td>
<td>0.1</td>
<td>--</td>
<td>0.1</td>
<td>--</td>
<td>0.1</td>
<td>+0.1</td>
</tr>
<tr>
<td>Common Carp</td>
<td>--</td>
<td>0.1</td>
<td>--</td>
<td>0.1</td>
<td>--</td>
<td>0.1</td>
<td>+0.1</td>
</tr>
<tr>
<td>Golden Shiner*</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.1</td>
<td>+0.1</td>
</tr>
<tr>
<td>Northern Pike</td>
<td>--</td>
<td>0.1</td>
<td>--</td>
<td>0.1</td>
<td>--</td>
<td>0.1</td>
<td>+0.1</td>
</tr>
</tbody>
</table>

*No length categories established. Length categories can be found in Appendix A.
Table 9. Gill-net (GN), or trap-net (TN) CPUE for selected fish species sampled in Lake Alvin, Lincoln County, 2006-2015.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bigmouth Buffalo</td>
<td>GN</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.6</td>
<td>--</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>--</td>
</tr>
<tr>
<td>Black Bullhead</td>
<td>GN</td>
<td>15.3</td>
<td>142.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>198.2</td>
<td>136.8</td>
<td>39.2</td>
<td>65.7</td>
<td>59.4</td>
<td>31.6</td>
<td>16.5</td>
<td>26.2</td>
<td>535.6</td>
<td>133.1</td>
</tr>
<tr>
<td>Black Crappie</td>
<td>GN</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>17.7</td>
<td>32.1</td>
<td>15.9</td>
<td>16.7</td>
<td>183.7</td>
<td>41.0</td>
<td>13.5</td>
<td>44.5</td>
<td>7.0</td>
<td>40.9</td>
</tr>
<tr>
<td>Bluegill</td>
<td>GN</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>47.5</td>
<td>87.9</td>
<td>26.1</td>
<td>27.5</td>
<td>21.3</td>
<td>6.1</td>
<td>47.5</td>
<td>4.1</td>
<td>3.2</td>
<td>60.5</td>
</tr>
<tr>
<td>Channel Catfish</td>
<td>GN</td>
<td>2.4</td>
<td>1.2</td>
<td>3.1</td>
<td>7.3</td>
<td>8.4</td>
<td>3.1</td>
<td>5.9</td>
<td>2.6</td>
<td>2.0</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>2.3</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Carp</td>
<td>GN</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.1</td>
<td>0.4</td>
<td>1.1</td>
<td>--</td>
<td>0.2</td>
<td>2.6</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>--</td>
</tr>
<tr>
<td>Freshwater Drum</td>
<td>GN</td>
<td>2.0</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>--</td>
</tr>
<tr>
<td>Golden Shiner</td>
<td>GN</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Sunfish</td>
<td>GN</td>
<td>0.3</td>
<td>0.5</td>
<td>0.9</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.2</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid Sunfish</td>
<td>GN</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largemouth Bass</td>
<td>GN</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>--</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Pike</td>
<td>GN</td>
<td>0.7</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>--</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>O. S. Sunfish</td>
<td>GN</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.1</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>--</td>
<td>4.0</td>
<td>0.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Carpsucker</td>
<td>GN</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.2</td>
<td>0.1</td>
<td>--</td>
<td>0.3</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Crappie</td>
<td>GN</td>
<td>--</td>
<td>--</td>
<td>0.1</td>
<td>0.8</td>
<td>0.2</td>
<td>--</td>
<td>0.2</td>
<td>0.1</td>
<td>0.8</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>0.8</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.8</td>
<td>--</td>
<td>0.2</td>
<td>0.1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>White Sucker</td>
<td>GN</td>
<td>2.0</td>
<td>4.0</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>2.5</td>
<td>4.5</td>
<td>7.1</td>
<td>2.6</td>
<td>4.3</td>
<td>6.7</td>
<td>3.3</td>
<td>1.0</td>
<td>3.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Yellow Perch</td>
<td>GN</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>0.2</td>
<td>0.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Black Crappie

Management Objective
- Maintain a black crappie population with a total trap-net CPUE of 20-30 and PSD of at least 40.

Management Strategies
- Black crappie growth and maximum size is reduced when population densities become too high. Consider reducing population densities when trap-net CPUE exceeds 30 for more than two years.
- Black crappies seldom exceed 25 cm (10 in) in Lake Alvin. Consider an experimental stocking of gizzard shad to provide supplemental forage.

Total trap-net CPUE increased from 7 in 2014 to almost 41 this year (Table 10). The majority were age-2+ and averaged about 17.6 cm (7 in) (Figures 2 and 3, Table 11). Black crappies up to age-3+ are growing relatively fast, especially for Lake Alvin (Table 11, Figure 3). Low crappie abundance in 2014 and increased forage availability provided by the stocking of gizzard shad may be responsible for the improved growth.

Table 10. CPUE, PSD, RSD-P, and mean Wr for all black crappie sampled with trap nets in Lake Alvin, Lincoln County, 2006-2015. Years in which the management objective was achieved or nearly achieved are shaded.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUE</td>
<td>17.7</td>
<td>32.1</td>
<td>15.9</td>
<td>16.7</td>
<td>183.7</td>
<td>41.0</td>
<td>13.5</td>
<td>44.5</td>
<td>7.0</td>
<td>40.9</td>
</tr>
<tr>
<td>PSD</td>
<td>34</td>
<td>3</td>
<td>13</td>
<td>38</td>
<td>1</td>
<td>68</td>
<td>53</td>
<td>6</td>
<td>77</td>
<td>8</td>
</tr>
<tr>
<td>RSD-23</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>RSD-P</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Mean Wr</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>110</td>
<td>110</td>
<td>102</td>
<td>103</td>
<td>108</td>
<td>93</td>
<td>99</td>
</tr>
</tbody>
</table>
Figure 2. CPUE by length category for black crappie sampled with trap nets in Lake Alvin, Lincoln County, 2010-2015.

Table 11. Weighted mean length at capture (mm) for black crappie sampled with trap nets in Lake Alvin, Lincoln County, 2006-2015. Note: sampling was conducted at approximately the same time during each year allowing comparisons among years to monitor growth trends. Sample size is in parentheses.

<table>
<thead>
<tr>
<th>Year</th>
<th>Age-1</th>
<th>Age-2</th>
<th>Age-3</th>
<th>Age-4</th>
<th>Age-5</th>
<th>Age-6</th>
<th>Age-7</th>
<th>Age-8</th>
<th>Age-9</th>
<th>Age-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>124</td>
<td>176</td>
<td>224</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(70)</td>
<td>(316)</td>
<td>(23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>125</td>
<td>207</td>
<td>--</td>
<td>248</td>
<td>239</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(11)</td>
<td>(56)</td>
<td></td>
<td>(2)</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>--</td>
<td>174</td>
<td>212</td>
<td>228</td>
<td>227</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(420)</td>
<td>(4)</td>
<td>(17)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>87</td>
<td>154</td>
<td>204</td>
<td>217</td>
<td>220</td>
<td>--</td>
<td>317</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(44)</td>
<td>(24)</td>
<td>(3)</td>
<td>(42)</td>
<td>(21)</td>
<td></td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>120</td>
<td>198</td>
<td>209</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>(159)</td>
<td>(237)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>130</td>
<td>177</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(19)</td>
<td>(1819)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>118</td>
<td>189</td>
<td>215</td>
<td>224</td>
<td>192</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(154)</td>
<td>(4)</td>
<td>(3)</td>
<td>(6)</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>119</td>
<td>158</td>
<td>189</td>
<td>205</td>
<td>195</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(61)</td>
<td>(58)</td>
<td>(4)</td>
<td>(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>109</td>
<td>179</td>
<td>205</td>
<td>222</td>
<td>220</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(307)</td>
<td>(7)</td>
<td>(5)</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>129</td>
<td>185</td>
<td>210</td>
<td>213</td>
<td>246</td>
<td>267</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(226)</td>
<td>(27)</td>
<td>(14)</td>
<td>(32)</td>
<td>(16)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3. Length frequency histograms for black crappies sampled with trap nets in Lake Alvin, Lincoln County, 2012, 2013, 2014, 2015.
Bluegill

Management Objective
- Maintain a bluegill population with a total trap-net CPUE of 25-50 and RSD-18 of at least 20.

Management Strategy
- Bluegill growth and maximum size is reduced when population densities become too high. Consider reducing population densities when trap-net CPUE exceeds 50 for more than two years.

Like black crappie, bluegill abundance also increased significantly in 2015 (Table 12). However, the size structure objective has not been met since 2012 (Table 12). Growth is reasonably good until age-3, and then slows with few fish reaching 18 cm (7 in, Table 13).

Table 12. CPUE, PSD, RSD-P, and mean Wr for all bluegills sampled with trap nets in Lake Alvin, Lincoln County, 2006-2015. Years in which the management objective was achieved or nearly achieved are shaded.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUE</td>
<td>47.5</td>
<td>87.9</td>
<td>26.1</td>
<td>27.5</td>
<td>21.3</td>
<td>6.1</td>
<td>47.5</td>
<td>4.1</td>
<td>3.2</td>
<td>60.5</td>
</tr>
<tr>
<td>PSD</td>
<td>51</td>
<td>37</td>
<td>88</td>
<td>84</td>
<td>61</td>
<td>89</td>
<td>73</td>
<td>34</td>
<td>78</td>
<td>34</td>
</tr>
<tr>
<td>RSD-18</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>62</td>
<td>19</td>
<td>8</td>
<td>44</td>
<td>0</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>RSD-P</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Mean Wr</td>
<td>92</td>
<td>91</td>
<td>99</td>
<td>110</td>
<td>91</td>
<td>95</td>
<td>97</td>
<td>104</td>
<td>100</td>
<td>94</td>
</tr>
</tbody>
</table>

![Figure 4](image-url)
*Figure 4.** CPUE by length category for bluegills sampled with trap nets in Lake Alvin, Lincoln County, 2010-2015.*
Table 13. Weighted mean length at capture (mm) for bluegills sampled with trap nets in Lake Alvin, Lincoln County, 2006-2015. Note: sampling was conducted at approximately the same time during each year allowing comparisons among years to monitor growth trends. Sample size is in parentheses.

<table>
<thead>
<tr>
<th>Year</th>
<th>Age-1</th>
<th>Age-2</th>
<th>Age-3</th>
<th>Age-4</th>
<th>Age-5</th>
<th>Age-6</th>
<th>Age-7</th>
<th>Age-8</th>
<th>Age-9</th>
<th>Age-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>--</td>
<td>137</td>
<td>155</td>
<td>172</td>
<td>178</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(378)</td>
<td>(154)</td>
<td>(59)</td>
<td>(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>97</td>
<td>150</td>
<td>168</td>
<td>176</td>
<td>207</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(7)</td>
<td>(16)</td>
<td>(4)</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>--</td>
<td>141</td>
<td>157</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(35)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>71</td>
<td>123</td>
<td>154</td>
<td>175</td>
<td>180</td>
<td>210</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(119)</td>
<td>(100)</td>
<td>(38)</td>
<td>(111)</td>
<td>(102)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>--</td>
<td>138</td>
<td>166</td>
<td>191</td>
<td>--</td>
<td>205</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(52)</td>
<td>(1)</td>
<td></td>
<td></td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>--</td>
<td>149</td>
<td>181</td>
<td>189</td>
<td>190</td>
<td>201</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(165)</td>
<td>(8)</td>
<td>(10)</td>
<td>(29)</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>114</td>
<td>133</td>
<td>173</td>
<td>183</td>
<td>194</td>
<td>173</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(31)</td>
<td>(13)</td>
<td>(167)</td>
<td>(36)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>--</td>
<td>135</td>
<td>155</td>
<td>163</td>
<td>174</td>
<td>193</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(44)</td>
<td>(44)</td>
<td>(168)</td>
<td>(9)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>--</td>
<td>133</td>
<td>149</td>
<td>160</td>
<td>178</td>
<td>184</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(325)</td>
<td>(400)</td>
<td>(123)</td>
<td>(21)</td>
<td>(9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>119</td>
<td>138</td>
<td>160</td>
<td>164</td>
<td>170</td>
<td>181</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(50)</td>
<td>(204)</td>
<td>(43)</td>
<td>(77)</td>
<td>(91)</td>
<td>(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5. Length frequency histograms for bluegills sampled with trap nets in Lake Alvin, Lincoln County, 2012, 2013, 2014, 2015.
Figure 6. Contour map of Lake Alvin, Lincoln County.
Appendix A. A brief explanation of catch per unit effort (CPUE), proportional stock density (PSD), relative stock density (RSD) and relative weight (Wr).

Catch per Unit Effort (CPUE) is the catch of animals in numbers or in weight taken by a defined period of effort. Can refer to trap-net nights of effort, gill net nights of effort, catch per hour of electrofishing, etc.

Proportional Stock Density (PSD) is calculated by the following formula:

\[
PSD = \frac{\text{Number of fish} > \text{quality length} \times 100}{\text{Number of fish} > \text{stock length}}
\]

Relative Stock Density (RSD-P) is calculated by the following formula:

\[
RSD-P = \frac{\text{Number of fish} > \text{preferred length} \times 100}{\text{Number of fish} > \text{stock length}}
\]

PSD and RSD-P are unitless and usually calculated to the nearest whole digit.

Size categories for selected species found in Region 3 lake surveys, in centimeters (Inches in parenthesis).

<table>
<thead>
<tr>
<th>Species</th>
<th>Stock</th>
<th>Quality</th>
<th>Preferred</th>
<th>Memorable</th>
<th>Trophy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walleye</td>
<td>25 (10)</td>
<td>38 (15)</td>
<td>51 (20)</td>
<td>63 (25)</td>
<td>76 (30)</td>
</tr>
<tr>
<td>Yellow perch</td>
<td>13 (5)</td>
<td>20 (8)</td>
<td>25 (10)</td>
<td>30 (12)</td>
<td>38 (15)</td>
</tr>
<tr>
<td>Black crappie</td>
<td>13 (5)</td>
<td>20 (8)</td>
<td>25 (10)</td>
<td>30 (12)</td>
<td>38 (15)</td>
</tr>
<tr>
<td>White crappie</td>
<td>13 (5)</td>
<td>20 (8)</td>
<td>25 (10)</td>
<td>30 (12)</td>
<td>38 (15)</td>
</tr>
<tr>
<td>Bluegill</td>
<td>8 (3)</td>
<td>15 (6)</td>
<td>20 (8)</td>
<td>25 (10)</td>
<td>30 (12)</td>
</tr>
<tr>
<td>Largemouth bass</td>
<td>20 (8)</td>
<td>30 (12)</td>
<td>38 (15)</td>
<td>51 (20)</td>
<td>63 (25)</td>
</tr>
<tr>
<td>Smallmouth bass</td>
<td>18 (7)</td>
<td>28 (11)</td>
<td>35 (14)</td>
<td>43 (17)</td>
<td>51 (20)</td>
</tr>
<tr>
<td>Northern pike</td>
<td>35 (14)</td>
<td>53 (21)</td>
<td>71 (28)</td>
<td>86 (34)</td>
<td>112 (44)</td>
</tr>
<tr>
<td>Channel catfish</td>
<td>28 (11)</td>
<td>41 (16)</td>
<td>61 (24)</td>
<td>71 (28)</td>
<td>91 (36)</td>
</tr>
<tr>
<td>Black bullhead</td>
<td>15 (6)</td>
<td>23 (9)</td>
<td>30 (12)</td>
<td>38 (15)</td>
<td>46 (18)</td>
</tr>
<tr>
<td>Common carp</td>
<td>28 (11)</td>
<td>41 (16)</td>
<td>53 (21)</td>
<td>66 (26)</td>
<td>84 (33)</td>
</tr>
<tr>
<td>Bigmouth buffalo</td>
<td>28 (11)</td>
<td>41 (16)</td>
<td>53 (21)</td>
<td>66 (26)</td>
<td>84 (33)</td>
</tr>
</tbody>
</table>

For most fish, 30-60 or 40-70 are typical objective ranges for “balanced” populations. Values less than the objective range indicate a population dominated by small fish while values greater than the objective range indicate a population comprised mainly of large fish.

Relative weight (Wr) is a condition index that quantifies fish condition (i.e., how much does a fish weigh for its length). A Wr range of 90-100 is a typical objective for most fish species. When mean Wr values are well below 100 for a size group, problems may exist in food and feeding relationships. When mean Wr values are well above 100 for a size group, fish may not be making the best use of available prey.